

Mark Scheme (Results)

January 2018

Pearson Edexcel International Advanced Subsidiary Level In Further Pure Mathematics F1 (WFM01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018
Publications Code WFM01_01_1801_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively.
 Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$, leading to $x=...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

January 2018 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number	Scheme				Notes	Marks
1.	Given $f(x) = 3x^2 - \frac{5}{3\sqrt{x}}$	$6, x > 0$ and root, α	α , of f(α	(x) = 0 lies in	n the interval [1.5, 1.6]	
(a)	$f'(x) = 6x + \frac{5}{6}x^{-\frac{3}{2}}$ At least one of			f either $3x^2$	$\rightarrow \pm Ax$ or $-\frac{5}{3\sqrt{x}} \rightarrow \pm Bx^{-\frac{3}{2}}$	M1
	6	~	where <i>A</i> and <i>B</i> are non-zero constants.			
		Correct differ	rentiatio		be simplified or un-simplified	A1
	$\left\{\alpha \simeq 1.5 - \frac{f(1.5)}{f'(1.5)}\right\} \Rightarrow \alpha \simeq$	$1.5 - \frac{-0.610827634}{9.453609212}$	19 	Valid atte	dent on the previous M mark empt at Newton-Raphson using ir values of $f(1.5)$ and $f'(1.5)$	dM1
	$\{\alpha = 1.564613167\} \Rightarrow \alpha = 1.565 \text{ (3 dp)}$ dependent on all 3 previous mark 1.565 on their first iteration				ndent on all 3 previous marks 1.565 on their first iteration nore any subsequent iterations)	A1 cso
					scores full marks in part (a)	
(1.)		nswer with <u>no</u> work	king sco	res no marl	ks in part (a)	(4)
(b)	• $\frac{\alpha - 1.5}{"0.6108276349"} = \frac{1.0 \text{ total}}{"0.3623843083"}$ • $\frac{\alpha - 1.5}{1.6 - \alpha} = \frac{"0.6108276349"}{"0.3623843083"}$ • $\frac{\alpha - 1.5}{1.6 - 1.5} = \frac{1.6 - 1.5}{1.6 - 1.5}$ method Do not allow this mark if a total of one or three negative lengths are used or if either fraction is the wrong way up				A correct linear interpolation method. Do not allow this mark if a total of one or three negative lengths are used or if either fraction is the wrong way up. This mark may be implied.	M1
	Either • $\alpha = \left(\frac{(1.6)("0.610827)}{"0.362384}\right)$ • $\alpha = 1.5 + \left(\frac{"}{"0.3623843}\right)$ • $\alpha = 1.5 + \left(\frac{"}{"-0.3623843}\right)$	0.6108276349" 083" + "0.6108276	5349"	(0.1)	dependent on the previous M mark Rearranges to make $\alpha =$	dM1
	$\left\{\alpha = 1.562764092\right\} \Rightarrow \alpha$				1.563	
	$\frac{\alpha - 1.502704072}{\alpha} \rightarrow \alpha$	$\{\alpha, \beta, \beta, \alpha \in \mathbb{N} \}$ $\{\alpha, \beta, \beta,$		(Ignore any subsequent iterations)		cao
(b)		0.1	(0.1)/!!	0.61002762	240 !!\	(3)
(b) Way 2	$\frac{x}{"0.6108276349"} = \frac{x}{"0.36}$	$\frac{0.1 - x}{523843083"} \Rightarrow x =$	$=\frac{(0.1)(1)}{0.9}$		$\frac{349"}{2} = 0.062764092$	
	$\alpha = 1.5 + 0.062764092$ sim			Finds x using a correct method of similar triangles and applies "1.5 + their x "		M1 dM1
	$\{\alpha = 1.562764092\} \Rightarrow \alpha = 1.563 (3 \text{ dp})$					A1 cao
(b) Way 3	$\frac{0.1 - x}{"0.6108276349"} = \frac{0.36}{"0.36}$	$\frac{x}{523843083"} \Rightarrow x =$	$=\frac{(0.1)("}{0.9}$	0.36238430 9732119432	083") = 0.037235908	
	$\alpha = 1.6 - 0.037235908$			Fir	nds x using a correct method of gles and applies "1.6 – their x "	M1 dM1
	$\{\alpha = 1.562764092\} \Rightarrow \alpha = 1.563 \text{ (3 dp)}$			1.563	A1 cao	

		Question 1 Notes						
1. (a)	Note	Incorrect differentiation followed by their estimate of α with no evidence of applying the NR formula is final dM0A0.						
	dM1	This mark can be implied by applying at least one correct <i>value</i> of either $f(1.5)$ or $f'(1.5)$						
		to 1 significant figure in $1.5 - \frac{f(1.5)}{f'(1.5)}$. So just $1.5 - \frac{f(1.5)}{f'(1.5)}$ with an incorrect answer						
		and no other evidence scores final dM0A0.						
	Note	You can imply the M1A1 marks for algebraic differentiation for either						
		• $f'(1.5) = 6(1.5) + \frac{5}{6}(1.5)^{-\frac{3}{2}}$						
		• f'(1.5) applied correctly in $\alpha \approx 1.5 - \frac{3(1.5)^2 - \frac{5}{3}(1.5)^{-\frac{1}{2}} - 6}{6(1.5) + \frac{5}{6}(1.5)^{-\frac{3}{2}}}$ Differentiating INCORRECTLY to give $f'(x) = 6x - \frac{5}{6}x^{-2}$ leads to						
		$6(1.5) + \frac{5}{6}(1.5)^{-\frac{3}{2}}$						
	Note	Differentiating INCORRECTLY to give $f'(x) = 6x - \frac{5}{6}x^{-2}$ leads to						
		$\alpha \simeq 1.5 - \frac{-0.6108276349}{9.3703703704} = 1.565187139 = 1.565 (3 dp)$						
	This response should be awarded M1 A0 dM1 A0							
	Note	Differentiating INCORRECTLY to give $f'(x) = 6x - \frac{5}{6}x^{-\frac{3}{2}}$ leads to						
		$\alpha \simeq 1.5 - \frac{-0.6108276349}{8.546390788} = 1.571471999 = 1.571 (3 dp)$						
		This response should be awarded M1 A0 dM1 A0						
	S.C.	Special Case: Differentiating INCORRECTLY to give $f'(x) = 6x - \frac{5}{6}x^{-\frac{3}{2}}$ and						
		$\alpha \approx 1.5 - \frac{f(1.5)}{f'(1.5)} = 1.571$ is M1 A0 dM1 A0						
1. (b)	Note	$\frac{\alpha - 1.5}{1.6 - \alpha} = \left \frac{\text{"- 0.6108276349"}}{\text{"0.3623843083"}} \right \text{ is a valid method for the first M mark}$						
	Note	$\frac{\alpha - 1.5}{1.6 - \alpha} = \frac{"0.6108276349"}{"0.3623843083"} \Rightarrow \alpha = 1.563 \text{ with no intermediate working is M1 dM1 A1}$						
	Note	$\frac{\alpha - 1.5}{-0.6108276349} = \frac{1.6 - \alpha}{0.3623843083} \implies \alpha = 1.745861961 = 1.745 (3 dp) \text{ is M0 dM0 A0}$						
	Note	$\frac{\alpha - 1.5}{-0.6108276349} = \frac{1.6 - \alpha}{-0.3623843083} \Rightarrow \alpha = 1.562764092 = 1.563 (3 dp) \text{ is M1 dM1 A1}$						

Question Number	Scheme		Notes	Marks
2.	$f(z) = z^4 - 6z^3 + 38z^2 - 94z$	$z + 221$, $z_1 = 2 + 3i$	satisfies $f(z) = 0$	
(a)	$\left\{z_2 = \right\} 2 - 3i$		2-3i seen or used in part (a)	B1
	$z^2 - 4z + 13$		Attempt to expand $(z-(2+3i))(z-(2-3i))$ or $(z-(2+3i))(z-(\text{their complex }z_2))$ ny valid method to establish a quadratic factor . $z=2\pm 3i \Rightarrow z-2=\pm 3i \Rightarrow z^2-4z+4=-9$ or sum of roots = 4, product of roots 13 to give $z^2\pm(\text{their sum})z+(\text{their product})$	M1
			$z^2 - 4z + 13$	A1
	$(z^2-4z+13)(z^2-2z+17)$	long divi	pts to find the other quadratic factor. e.g. using sion to obtain either $z^2 \pm kz +, k = \text{value} \neq 0$ or $z^2 \pm \alpha z + \beta$, $\beta = \text{value} \neq 0$, α can be 0 or e.g. factorising $f(z) = (z^2 - 2z + 5)(z^2 \pm kz \pm c)$, $k = \text{value} \neq 0$ $z + 5)(z^2 \pm \alpha z \pm \beta)$, $\beta = \text{value} \neq 0$, α can be 0	M1
_			$z^2 - 2z + 17$	A1
	$\left\{z^2 - 2z + 17 = 0 \Longrightarrow\right\}$			
	Either $z = \frac{-2 \pm \sqrt{(-2)^2}}{2(1)}$ • $(z-1)^2 - 1 + 17 = 0$		dependent on only the previous M mark Correct method of applying the quadratic formula or completing the square for solving a 3TQ on their 2 nd quadratic factor	dM1
	$\{z=\}\ 1+4i, 1-4i$		1 + 4i and 1 – 4i	A1
				(7)
(b)	Im (1,4) (2,3)		 Criteria 2±3i plotted correctly in quadrants 1 and 4 Dependent on the final M mark being awarded in part (a). Their final two roots are plotted correctly 	Die
	O $(2, -3)$ $(1, -4)$	Re	Satisfies at least one of the criteria Satisfies both criteria with some indication of scale or coordinates stated with at least one pair of roots symmetrical about the real axis	B1ft B1ft
			-	(2)
				9

		Question 2 Notes					
2. (a)	Note	No working leading to $x = 1+4i$, $1-4i$ is M0A0M0A0M0A0.					
	Note	You can assume $x \equiv z$ for solutions in this question.					
	Note	Give dM1A1 for $z^2 - 2z + 17 = 0 \Rightarrow z = 1 + 4i$, $1 - 4i$ with no intermediate working.					
	Note	Special Case: If their second 3 term quadratic factor can be factorised then					
		give Special Case dM1 for correct factorisation leading to $z =$					
	Note	Otherwise, give 3 rd dM0 for applying a method of factorising to solve their 3TQ.					
	Note	Reminder: Method Mark for solving a 3TQ, " $az^2 + bz + c = 0$ "					
		Formula:					
		Attempt to use the correct formula (with values for a, b and c)					
		Completing the square:					
		$\left(z \pm \frac{b}{2}\right)^2 \pm q \pm c = 0, q \neq 0, \text{ leading to } z = \dots$					

Question Number	Scheme			Notes	Marks
3. (a)	$\sum_{r=1}^{n} r^{2}(r+1) = \sum_{r=1}^{n} r^{3} + \sum_{r=1}^{n} r^{2}$				
	$= \frac{1}{4}n^2(n+1)^2 + \frac{1}{6}n(n+1)(2n+1)$		_	expand $r^2(r+1)$ and attempts to one correct standard formula into their resulting expression.	M1
			C	orrect expression (or equivalent)	A1
	$= \frac{1}{12}n(n+1)[3n(n+1) + 2(2n+1)]$		dependent on the previous M mark Attempt to factorise at least $n(n+1)$ having attempted to substitute both standard formulae.		
	$= \frac{1}{12}n(n+1)\Big[3n^2 + 7n + 2\Big]$		{this	step does not have to be written}	
	$= \frac{1}{12}n(n+1)[3n^2 + 7n + 2]$ $= \frac{1}{12}n(n+1)(n+2)(3n+1)$		Co	orrect completion with no errors. Note: $a = 3, b = 1$	A1
		<u> </u>			(4)
(b)	$\sum_{r=0}^{25} r^2 (r+1) + \sum_{r=0}^{k} 3^r = 140543$	{Note: Let $f(n) = \frac{1}{12}n(n+1)(n+2)(3n+1)$			
	r=5			or their answer to part (a).	
	$\left\{ \sum_{r=5}^{25} r^2(r+1) \right\} = \left(\frac{1}{12} (25)(26)(27)(76) \right)$	$-\left(\frac{1}{-}(4)(5)\right)$	(6)(13)	Attempts to find either $f(25) - f(4)$ or	
	$\left(\begin{array}{c} \sum_{r=5}^{r} \left(12 \right) \end{array}\right)$	(12		f(25) - f(5)	M1
	$\{ = 111150 - 130 = 11102 \}$	0 }		This mark can be implied	
	(depe	endent on the previous M mark	
	$\sum_{r=1}^{k} 3^{r} = 140543 - "111020" \ \left\{ = 29523 \right\}$			heir $\sum_{r=1}^{k} 3^r = 140543 - "111020"$	dM1
				This mark can be implied	
	$\frac{3(1-3^k)}{1-3}$ or $\frac{3(3^k-1)}{3-1}$		Correct GP sum formula with $a = 3, r = 3, n = k$		M1
	$\left\{ \frac{3\left(1-3^{k}\right)}{1-3} = 29523 \Rightarrow 3^{k} = 19683 \Rightarrow \right\}$	\ k = 9		k = 9 from a correct solution	
					(4)
(b)	Alt 1 Method for the final 2 marks				
Alt 1	$\sum_{r=1}^{k} 3^r = 29523$		1	Attempts to solve $\sum_{r=1}^{k} 3^r$ = value	M1
	$\Rightarrow 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + 3^7 + 3^8 + 3^9$			by evaluating 3^r from $r=1$ to at	
	or 3+9+27+81+243+729+2187+	+6561+196	83	least as far as $r=9$	
<i>A</i> \	= 29523, so $k = 9$			k = 9 from a correct solution	A1 cso
(b) Alt 2	Alt 2 Method for the final 2 marks $\sum_{k=0}^{k} 3^{k} = 29523 \implies 3(1+3+3^{2}+3^{3}++3^{k-1}) = 29523$				
	,	$\sum_{r=1}^{k-1} 3^r + 3^k = \begin{cases} "29523" - 1 + 3^k = "29523" & "29523" \\ \hline 3 & -1 + 3^k = " \end{cases}$			M1
	$\left\{3^k = 19683 \implies\right\} k = 9$			k = 9 from a correct solution	A1 cso
					8
					_

		Question 3 Notes							
3. (a)	Note	Applying e.g. $n=1$, $n=2$ to the printed equation without applying the standard formulae to give $a=3$, $b=1$ is M0A0M0A0							
	Alt 1	Alt Method 1 (Award the first two marks using the main scheme)							
		Using $\frac{1}{12} (3n^4 + 10n^3 + 9n^2 + 2n) = \frac{1}{12} (an^4 + (3a+b)n^3 + (2a+3b)n^2 + 2bn)$ o.e.							
	dM1 A1 cso	Equating coefficients to find both $a =$ and $b =$ and at least one of $a = 3$, $b = 1$ Finds $a = 3$, $b = 1$ and demonstrates the identity works for all of its terms.							
	Alt 2 Alt Method 2: (Award the first two marks using the main scheme) $\frac{1}{n} n^2 (n+1)^2 + \frac{1}{n} n(n+1)(2n+1) = \frac{1}{n} n(n+1)(n+2)(2n+b)$								
	dM1	$\frac{1}{4}n^2(n+1)^2 + \frac{1}{6}n(n+1)(2n+1) \equiv \frac{1}{12}n(n+1)(n+2)(an+b)$ Substitutes $n=1$, $n=2$, into this identity o.e. and solves to find both $a=$ and $b=$ and at least one of $a=3$, $b=1$. Note: $n=1$ gives $4=a+b$ and $n=2$ gives $7=2a+b$							
	A1	Finds $a=3, b=1$							
	Note	Allow final dM1A1 for $\frac{1}{4}n^4 + \frac{5}{6}n^3 + \frac{3}{4}n^2 + \frac{1}{6}n$ or $\frac{1}{12}n(3n^3 + 10n^2 + 9n + 2)$							
		or $\frac{1}{12}(3n^4 + 10n^3 + 9n^2 + 2n) \rightarrow \frac{1}{12}n(n+1)(n+2)(3n+1)$ with no incorrect working.							
	Note	A correct proof $\sum_{r=1}^{n} r^2(r+1) = \frac{1}{12}n(n+1)(n+2)(3n+1)$ followed by stating an incorrect							
		e.g. $a = 1, b = 3$ is M1A1dM1A1 (ignore subsequent working)							
(b)	Note	Using $f(25) - f(5)$ gives • $f(25) - f(5) = 111150 - 280 = 110870$							
		• $1(23) - 1(3) = 111130 - 280 = 110870$ • $\sum_{r=1}^{k} 3^r = 140543 - "110870" = 29673$							
	Note	Allow 1st M1 for either							
		$\left\{ \sum_{r=5}^{25} r^2 (r+1) \right\} = \left(\frac{1}{4} (25)^2 (26)^2 + \frac{1}{6} (25)(26)(51) \right) - \left(\frac{1}{4} (4)^2 (5)^2 + \frac{1}{6} (4)(5)(9) \right)$							
		$\left\{ = (105625 + 5525) - (100 + 30) = 111150 - 130 = 111020 \right\}$							
		$\left\{ \sum_{r=5}^{25} r^2 (r+1) \right\} = \left(\frac{1}{4} (25)^2 (26)^2 + \frac{1}{6} (25)(26)(51) \right) - \left(\frac{1}{4} (5)^2 (6)^2 + \frac{1}{6} (5)(6)(11) \right)$							
		$\{= (105625 + 5525) - (225 + 55) = 111150 - 280 = 110870\}$							
	Note	$\frac{3(1-3^k)}{1-3} \text{ or } \frac{3(3^k-1)}{3-1} = 29523 \Rightarrow k = 9 \text{ with no intermediate working is } 2^{\text{nd}} \text{ M1 } 2^{\text{nd}} \text{ A1}$							
	Note	$\sum_{r=1}^{k} 3^{r} = 29523 \Rightarrow k = 9 \text{ with no intermediate working is } 2^{\text{nd}} \text{ M1 } 2^{\text{nd}} \text{ A1}$							

Question Number	Scheme	Notes	Marks
4.	$3x^2 + 2x + 5 =$	0 has roots α , β	
(a)	$\alpha + \beta = -\frac{2}{3}, \ \alpha\beta = \frac{5}{3}$		
	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \dots$	Use of the correct identity for $\alpha^2 + \beta^2$ (May be implied by their work)	M1
	$= \left(-\frac{2}{3}\right)^2 - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$	$-\frac{26}{9}$ or $-2\frac{8}{9}$ from correct working	A1 cso
			(2)
(b)	$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = \dots$ or $= (\alpha + \beta)(\alpha^{2} + \beta^{2} - \alpha\beta) = \dots$	Use of an appropriate and correct identity for $\alpha^3 + \beta^3$ (May be implied by their work)	M1
	$= \left(-\frac{2}{3}\right)^3 - 3\left(\frac{5}{3}\right)\left(-\frac{2}{3}\right) = \frac{82}{27} *$ or $= \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} *$	$\frac{82}{27}$ from correct working	
(c)	0	2	(2)
	Sum = $\alpha + \frac{\alpha}{\beta^2} + \beta + \frac{\beta}{\alpha^2}$ or = $\frac{\alpha\beta^2 + \alpha}{\beta^2}$ = $\alpha + \beta + \frac{\alpha^3 + \beta^3}{(\alpha\beta)^2}$ = $\frac{\alpha^3 + \beta^3 + \alpha^2}{\alpha^2\beta}$ = $\left(-\frac{2}{3}\right) + \frac{\left(\frac{82}{27}\right)}{\left(\frac{5}{3}\right)^2}$ $\left\{ = -\frac{2}{3} + \frac{82}{75} = \frac{32}{75} \right\}$	either $\frac{\alpha^3 + \beta^3}{(\alpha\beta)^2}$ or $\frac{\alpha^3 + \beta^3}{\alpha^2\beta^2}$ and substitutes at least one of their $\alpha + \beta$, $\alpha^3 + \beta^3$ or $\alpha\beta$ into an expression for the sum of $\left(\alpha + \frac{\alpha}{\beta^2}\right)$ and $\left(\beta + \frac{\beta}{\alpha^2}\right)$	M1
	Product = $\left(\alpha + \frac{\alpha}{\beta^2}\right) \left(\beta + \frac{\beta}{\alpha^2}\right)$ or = $\left(\frac{\alpha\beta^2 + \beta}{\beta^2}\right)$ or = $\left(\frac{\alpha\beta^2 + \beta}{\beta^2}\right)$ or = $\left(\frac{\alpha\beta^2 + \beta}{\beta^2}\right)$ or = $\left(\frac{\alpha\beta^3 + \alpha\beta}{\beta^2}\right)$ or = $\left(\frac{\alpha\beta^3 + \alpha\beta}{\beta^2}\right)$ or = $\left(\frac{\alpha\beta^3 + \alpha\beta}{\beta^3}\right)$ or = $\left(\frac{\alpha\beta\beta^3 + \alpha\beta}{\beta^3}\right)$ or = $\left(\frac{\alpha\beta\beta^3 + \alpha\beta\beta}{\alpha^3}\right)$ or = $\left(\frac{\alpha\beta\beta^3 + \alpha\beta\beta}{\alpha^3}\right)$ or = $\left(\frac{\alpha\beta\beta^3 + \alpha\beta\beta}{\alpha^3}\right)$ or = $\left(\frac{\alpha\beta\beta\beta^3 + \alpha\beta\beta}{\alpha^3}\right)$ or = $\left(\frac{\alpha\beta\beta\beta^3 + \alpha\beta\beta}{\alpha^3}\right)$ or = $\left(\frac{\alpha\beta\beta\beta^3 + \alpha\beta\beta\beta}{\alpha^3}\right)$ or = $\left(\frac{\alpha\beta\beta\beta^3 + \alpha\beta\beta\beta}{\alpha^3}\right)$ or = $\left(\frac{\alpha\beta\beta\beta\beta^3 + \alpha\beta\beta\beta}{\alpha^3}\right)$ or = $\left(\alpha\beta$	Expands $\left(\alpha + \frac{\alpha}{\beta^2}\right) \left(\beta + \frac{\beta}{\alpha^2}\right)$ to give 4 terms and substitutes either their $\alpha\beta$ at least once or their $\alpha^2 + \beta^2$	M1
	$x^2 - \frac{32}{75}x + \frac{8}{15} = 0$	Applies $x^2 - (\text{sum})x + \text{product (can be implied)}$. where sum and product are numerical values. Note: "=0" not required for this mark	M1
	$75x^2 - 32x + 40 = 0$	Any integer multiple of $75x^2 - 32x + 40 = 0$, including the " = 0"	A1
			(4)
			8

		Question 4 Notes							
4. (a)	Note	Writing a correct $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ without attempting to substitute at least one of either their $\alpha + \beta$ or their $\alpha\beta$ into $(\alpha + \beta)^2 - 2\alpha\beta$ is M0							
	Note	Give M1A0 for $\alpha + \beta = \frac{2}{3}$, $\alpha\beta = \frac{5}{3}$ leading to $\alpha^2 + \beta^2 = \left(\frac{2}{3}\right)^2 - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$							
	Note	Give M1A1 for writing $\alpha^2 + \beta^2 = -\frac{26}{9}$ with no evidence of applying $\alpha + \beta = -\frac{2}{3}$, $\alpha\beta = \frac{5}{3}$							
(b)	Note	Allow M1 A1 for $\alpha^3 + \beta^3 = (\alpha^2 + \beta^2)(\alpha + \beta) - \alpha\beta(\alpha + \beta)$							
		$= \left(-\frac{26}{9}\right)\left(-\frac{2}{3}\right) - \left(-\frac{2}{3}\right)\left(\frac{5}{3}\right) \left\{=\frac{52}{27} + \frac{10}{9}\right\} = \frac{82}{27} *$							
	Note	Writing a correct $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ without attempting to substitute							
		at least one of either their $\alpha + \beta$ or their $\alpha\beta$ into $(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ is M0							
	Note	Writing a correct $\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)$ without attempting to substitute							
		at least one of either their $\alpha + \beta$, their $\alpha^2 + \beta^2$ or their $\alpha\beta$ into $(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ is M0							
(a), (b)	Note	Applying $\frac{-1+\sqrt{14}i}{3}$, $\frac{-1-\sqrt{14}i}{3}$ explicitly will score (a) M0A0, (b) M0A0							
		• E.g. In part (a), give no credit for $\left(\frac{-1+\sqrt{14}i}{3}\right)^2 + \left(\frac{-1-\sqrt{14}i}{3}\right)^2 = -\frac{26}{9}$							
		• E.g. In part (b), give no credit for $\left(\frac{-1+\sqrt{14}i}{3}\right)^3 + \left(\frac{-1-\sqrt{14}i}{3}\right)^3 = \frac{82}{17}$							
	Note	Using $\frac{-1+\sqrt{14}i}{3}$, $\frac{-1-\sqrt{14}i}{3}$ to find $\alpha+\beta=-\frac{2}{3}$, $\alpha\beta=\frac{5}{3}$ followed by							
		• $\alpha^2 + \beta^2 = \left(\frac{2}{3}\right)^2 - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$, scores M1A0 in part (a)							
		• $\alpha^3 + \beta^3 = \left(-\frac{2}{3}\right)^3 - 3\left(\frac{5}{3}\right)\left(-\frac{2}{3}\right) = \frac{82}{27}$, scores M1A0 in part (b)							
(c)	Note	A correct method leading to $a = 75$, $b = -32$, $c = 40$ without writing a final answer of							
		$75x^2 - 32x + 40 = 0$ is final M1A0.							
	Note	Using $\frac{-1+\sqrt{14}i}{3}$, $\frac{-1-\sqrt{14}i}{3}$ explicitly to find the sum and product of $\left(\alpha+\frac{\alpha}{\beta^2}\right)$ and $\left(\beta+\frac{\beta}{\alpha^2}\right)$							
		scores M0M0M0A0 in part (c).							
	Note	Using $\frac{-1+\sqrt{14}i}{3}$, $\frac{-1-\sqrt{14}i}{3}$ to find $\alpha+\beta=-\frac{2}{3}$, $\alpha\beta=\frac{5}{3}$ and applying $\alpha+\beta=-\frac{2}{3}$, $\alpha\beta=\frac{5}{3}$							
		can potentially score full marks in part (c). E.g.							
		• Sum = $\alpha + \beta + \frac{\alpha^3 + \beta^3}{(\alpha \beta)^2} = \left(-\frac{2}{3}\right) + \frac{\left(\frac{82}{27}\right)}{\left(\frac{5}{3}\right)^2} = \frac{32}{75}$							
		• Product = $\alpha\beta + \frac{\beta^2 + \alpha^2}{\alpha\beta} + \frac{1}{\alpha\beta} = \left(\frac{5}{3}\right) + \frac{\left(-\frac{26}{9}\right)}{\left(\frac{5}{3}\right)} + \frac{1}{\left(\frac{5}{3}\right)} = \frac{8}{15}$							
		• $x^2 - \frac{32}{75}x + \frac{8}{15} = 0 \Rightarrow 75x^2 - 32x + 40 = 0$							

Question Number	Scheme		Notes	Marks	
5.	(i) $\frac{2z+3}{z+5-2i} = 1$	1 + i (ii) w =	$= (3 + \lambda i)(2 + i)$ and $ w = 15$		
(i)	2z + 3 = (1 + i)(z + 5 - 2i)		Multiplies both sides by $(z + 5 - 2i)$	M1	
	2z + 3 = z + 5 - 2i + iz + 5i + 2 =	z + iz + 7 + 3i			
	E.g. • $2z - z(1+i) = (1+i)(5-2i)$ • $z - iz = 4 + 3i$	-3	dependent on the previous M mark Collects terms in z to one side	dM1	
	$z = \frac{4+3i}{1-i}$		Correct expression for $z =$	A1	
	$z = \frac{(4+3i)}{(1-i)} \frac{(1+i)}{(1+i)} = \frac{1}{2} + \frac{7}{2}i$	Multiplies nu	dependent on both previous M marks merator and denominator by the conjugate of the denominator and attempts to find $z =$	ddM1	
	(1-1) $(1+1)$ 2 2	e.g. $\frac{1}{2} + \frac{7}{2}i$	or $\frac{7}{2}i + \frac{1}{2}$ or $0.5 + 3.5i$ or $a = \frac{1}{2}$, $b = \frac{7}{2}$	A1 cao	
/*\	2 + 2 (1 + 1)/ + 5 (21)		Malicalia 1 di 11 di 7 di 70	(5)	
(i)	2z + 3 = (1 + i)(z + 5 - 2i)	2:>	Multiplies both sides by $(z + 5 - 2i)$	M1	
Way 2	2(a + bi) + 3 = (1 + i)(a + bi + 5 - 2i) $(2a + 3) + 2bi = a + bi + 5 - 2i + ai - b + 5i + 2$ $(2a + 3) + 2bi = (a - b + 7) + (b + a + 3)i$		dependent on the previous M mark Applies $z = a + bi$, multiplies out and attempts to equate either the real part or the imaginary part of the resulting equation	dM1	
	${Real \Rightarrow } 2a + 3 = a - b$ ${Imaginary \Rightarrow } 2b = b + a$		Both correct equations which can be simplified or un-simplified		
	$\begin{cases} a+b=4\\ -a+b=3 \end{cases} \Rightarrow b=\frac{7}{2}, a=\frac{1}{2}$	equati	nt on both previous M marks. Obtains two ions both in terms of a and b and solves them ously to give at least one of $a =$ or $b =$ $b = \frac{7}{2}$ or $\frac{1}{2} + \frac{7}{2}i$ or $\frac{7}{2}i + \frac{1}{2}$ or $0.5 + 3.5i$	ddM1 A1 cao	
		2	2 2 2 2 2	(5)	
(ii)	$w = 6 + 3i + 2i\lambda - \lambda$ $w = (6 - \lambda) + (3 + 2\lambda)i$		Squares and adds the real and imaginary parts of w and sets equal to either 15 ² or 15 Correct equation	M1	
	$(15)^2 = (6 - \lambda)^2 + (3 + 2\lambda)^2$		which can be simplified or un-simplified	A1	
	$\begin{cases} 225 = 36 - 12\lambda + \lambda^2 + 9 + 12\lambda + \\ 225 = 45 + 5\lambda^2 \implies \lambda^2 = 36 \end{cases}$	$-4\lambda^2$	dependent on the previous M mark Solves their quadratic in λ to give $\lambda^2 = \dots$ or $\lambda = \dots$	dM1	
	$\lambda = 6, -6$		$\lambda = 6, -6$	A1	
				(4)	
(ii) Way 2	$ \left\{ \left (3 + \lambda i)(2 + i) \right = 15 \Rightarrow \right\} $ $ \sqrt{(3^2 + \lambda^2)} \sqrt{(2^2 + 1^2)} = 15 $		$\sqrt{(3^2 + \lambda^2)} \sqrt{(2^2 + 1^2)} = 15$ or $(3^2 + \lambda^2)(2^2 + 1^2) = 15$	M1	
	or $(3^2 + \lambda^2)\sqrt{(2^2 + 1^2)} = 15$ or $(3^2 + \lambda^2)(5) = (15)^2$		Correct equation which can be simplified or un-simplified	A1	
	$45 = 9 + \lambda^2 \implies \lambda^2 = 36$		dependent on the previous M mark Solves their quadratic in λ to give $\lambda^2 =$ or $\lambda =$	dM1	
	$\lambda = 6, -6$		$\lambda = 6, -6$	A1	
				(4)	
				9	

Question Number	Scheme		Notes			
5.	$\frac{2z+3}{z+5-2i} = 1+i$					
(i) Way 3	$\frac{2z+10-4i-7+4i}{z+5-2i} = 1+i$					
	$2 + \frac{-7 + 4i}{z + 5 - 2i} = 1 + i$	$\frac{2z+3}{z+5-2i}$	$+ \rightarrow 2 \pm \frac{k}{z + 5 - 2i}, k \in \mathbb{C}$	M1		
	$1 - \mathbf{i} = \frac{7 - 4\mathbf{i}}{z + 5 - 2\mathbf{i}}$					
	$z + 5 - 2i = \frac{7 - 4i}{1 - i}$ dependent on the previous M mar Rearranges to give $z + 5 - 2i =$					
	1 1	Correct ex	expression for $z + 5 - 2i =$	A1		
	$z + 5 - 2i = \frac{(7 - 4i)}{(1 - i)} \frac{(1 + i)}{(1 + i)} \Rightarrow z =$	t on both previous M marks s numerator and denominator conjugate of the denominator and attempts to find $z =$	ddM1			
	$\left\{z + 5 - 2\mathbf{i} = \frac{11}{2} + \frac{3}{2}\mathbf{i} \implies \right\} z = \frac{1}{2} + \frac{7}{2}\mathbf{i} \qquad \text{e.g. } \frac{1}{2} + \frac{7}{2}\mathbf{i} \text{or } \frac{7}{2}\mathbf{i} + \frac{1}{2} \text{ or } 0.5 + 3$					
(i) Way 4	$\frac{2(a+bi)+3}{a+bi+5-2i} = 1+i \implies \frac{(2a+3)+2bi}{(a+5)+(b-2)i} = 1+i$					
	$\left(\frac{(2a+3)+2bi}{(a+5)+(b-2)i}\right)\left(\frac{(a+5)-(b-2)i}{(a+5)-(b-2)i}\right) = 1 + \frac{1}{2}$	- i				
	$\frac{\left[(2a+3)(a+5)+2b(b-2)\right]+\mathrm{i}\left[2b(a+5)-(2a+5)^2+(b-2)^2\right]}{(a+5)^2+(b-2)^2}$	$\frac{(a+3)(b-2)}{2} = 1$	+ i			
	$ {\text{Real} \Rightarrow } \frac{(2a+3)(a+5)+2b(b-2)}{(a+5)^2+(b-2)^2} $ $ {\text{Imaginary} \Rightarrow } \frac{2b(a+5)-(2a+3)(b-2)}{(a+5)^2+(b-2)^2} $		Applies $z = a + bi$ and a full method leading to equating both the real part and the imaginary part	M1		
	{Real \Rightarrow } $a^2 + b^2 + 3a - 14 = 0$ {Imaginary \Rightarrow } $a^2 + b^2 + 6a - 11b + 23 = 0$	Manipulate	ent on the previous M mark s both their real part and their part into their simplest forms	dM1		
	$\left(\text{Inaginar}\right) \rightarrow \left(\text{if } 10 + \text{of } 10 + 25 \right)$	Botl	n correct simplified equations	A1		
	"Real - Imaginary" gives $-3a + 11b - 37 = 0$ and e.g. • $a = \frac{11b - 37}{3} \Rightarrow \left(\frac{11b - 37}{3}\right)^2 + b^2 + 3\left(\frac{11b - 37}{3}\right) - 14 = 0$ $\Rightarrow 2b^2 - 11b + 14 = 0 \Rightarrow (b - 2)(2b - 7) = 0 \Rightarrow b =$ • $b = \frac{3a + 37}{11} \Rightarrow a^2 + \left(\frac{3a + 37}{11}\right)^2 + 3a - 14 = 0$ $\Rightarrow 2a^2 + 9a - 5 = 0 \Rightarrow (a + 5)(2a - 1) = 0 \Rightarrow a =$ $c = \frac{1}{2} + \frac{7}{2}i$ $c = \frac{1}{2} + \frac{7}{2}i$ $c = \frac{1}{2} + \frac{1}{2}i$ $c = \frac{1}{$					
				(5)		

Question Number		Scheme	Notes	Marks				
5.		$\frac{2z+3}{z+5-2i}$	= 1 + i					
(i) Way 5	$\frac{2z+3}{1+i}$	$\frac{3}{z} = z + 5 - 2i$						
	$\frac{(2z+3)}{(1+i)}$	$\frac{(1-i)}{(1-i)} = z + 5 - 2i$	Multiplies $\frac{(2z+3)}{(1+i)}$ by $\frac{(1-i)}{(1-i)}$ and sets equal to $z+5-2i$	M1				
	$\frac{(2z+3)}{2}$	$\frac{0(1-i)}{2} = z + 5 - 2i$ 2iz - 3i = 2z + 10 - 4i						
	2z + 3 -	2iz - 3i = 2z + 10 - 4i						
	2i	z = -7 + i	dependent on the previous M mark Rearranges to make $2iz =$					
			Correct expression for $2iz =$	A1				
	-2	dependent on both previous M marks Multiplies both sides by i and attempts to find $z =$	ddM1					
	z	$=\frac{1}{2}+\frac{7}{2}i$	e.g. $\frac{1}{2} + \frac{7}{2}i$ or $\frac{7}{2}i + \frac{1}{2}$ or $0.5 + 3.5i$	A1				
				(5)				
		Que	estion 5 Notes					
5. (i)	Note	Way 4 method generates $z = \frac{1}{2} + \frac{7}{2}i$ only answer for the final A mark	and $z = -5 + 2i$ but $z = \frac{1}{2} + \frac{7}{2}i$ must be state	ed as the				
	Note		$=\frac{7}{2}$ followed by an incorrect $\{z=\}$ $\frac{7}{2}+\frac{1}{2}i$					
	Note	${z =} \frac{1}{2} + i\frac{7}{2}$ is fine for the final A n	nark					
	Note	Give final A0 for $\{z =\}$ $\frac{1+7i}{2}$ without	out reference to e.g. $a = \frac{1}{2}, b = \frac{7}{2}$ or $\frac{1}{2} + \frac{7}{2}i$,	etc.				
(ii)	Note	$w = (6 - \lambda) + (3 + 2\lambda)i \implies (15)^2 = (6 - \lambda)^2 + (6 - \lambda)^2 = (6 - $	$(5-\lambda)^2 - (3+2\lambda)^2$ is 1 st M0					
	Note	$\left (3 + \lambda i)(2 + i) \right = 15 \implies \sqrt{(3^2 - \lambda^2)}$						
	Note	Give final A0 for either $ \lambda = 6, -6 \implies \lambda = 6 $	•					
	• $\lambda = 6, -6 \Rightarrow \lambda = -6$							

Question Number	Scheme	Scheme		Notes	Mark	S
6.	$C: y^2 = 32x$; S is the focus of C; $P(2, 8)$ lies on C; T lies on the directrix of C. $H: xy = 4$					
(a)	S has coordinates (8, 0)			(8, 0)	B1 ca	ao
						(1)
(b)	{ PT is parallel to the x -axis \Rightarrow } $T(-8, 8) \Rightarrow PT = 2 8 = 10$ Focus-directrix Property $\Rightarrow PT = \sqrt{8^2 + (8 - 2)^2} = 10$			<i>PT</i> = 10	B1 ca	ao
		T				(1)
(c)	$y = \sqrt{32} x^{\frac{1}{2}} \implies \frac{dy}{dx} = \frac{1}{2} \sqrt{32} x^{-\frac{1}{2}} \text{ or } 2\sqrt{2} x^{-\frac{1}{2}}$			$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k x^{-\frac{1}{2}}; k \neq 0$		
	$y^2 = 32x \implies 2y \frac{\mathrm{d}y}{\mathrm{d}x} = 32$			$\lambda y \frac{\mathrm{d}y}{\mathrm{d}x} = \mu \; ; \; \lambda, \mu \neq 0$	M1	
	$x = 8t^2$, $y = 16t \implies \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = 16\left(\frac{1}{16t}\right)$	$x = at^2, y =$	2at ⇒	their $\frac{dy}{dt} \times \frac{1}{\text{their } \frac{dy}{dt}}$; $a \neq 0$		
	So at P , $m_T = 2$			work leading to $m_T = 2$	A1	
	Either		_	t line method using their		
	• $y-8 = "2"(x-2)$ • $8 = "2"(2) + c \implies y = "2"x + \text{their } c$		gradient $m_T (\neq m_N)$ which is found by using		M1	
	Correct algebra leading to $y = 2x + 4$ *	Care	cuius. T	Note: m_T must be a value Correct solution only	A1 *	
	Coffect algebra reading to $y = 2x + 4$ Coffect solution only				AI	(4)
(d)	1 - m(2m + 4) = 4 + 1 + 2 + 1 + 4 + 1	utes either $y = 2x + 4$ i	nto xy =	= 4		•
	$\begin{pmatrix} x & y \end{pmatrix}$	$y = \frac{4}{x}$ or $x = \frac{4}{x}$,		M1	
	-=2(2l)+4		ι	to $y = 2x + 4$ r x only, y only or t only		
	$2x^2 + 4x - 4 = 0$ or $x^2 + 2x - 2 = 0$ or	ir uir equation		correct 3 term quadratic		
	$\frac{1}{2}y^2 - 2y - 4 = 0$ or $y^2 - 4y - 8 = 0$ or Note:	$2x^2 + 4x = 4$	$\frac{1}{2}y^2 -$	$2y - 4 = 0, \ 2 = 4t^2 + 4t$	A1	
	$4t^2 + 4t - 2 = 0$ or $2t^2 + 2t - 1 = 0$ or 2	$2x^2 + 4x - 4$	= 0} are	acceptable for this mark		
	• $\{x^2 + 2x - 2 = 0 \Rightarrow\} (x+1)^2 - 1 - 2 = 0 \Rightarrow x = 0$					
	• $\left\{2t^2 + 2t - 1 = 0 \Longrightarrow\right\} t = \frac{-2 \pm \sqrt{(2)^2 - 4(2)(-1)}}{2(2)}$ and either $x = 2\left(\frac{1}{2} \pm \frac{1}{2}\sqrt{3}\right)$ or $y = \frac{2}{\left(\frac{1}{2} \pm \frac{1}{2}\sqrt{3}\right)}$	$\overline{\overline{3}}$ for $\overline{3}$	rect met squar mula or	the previous M mark thod (e.g. completing the e, applying the quadratic factorising) of solving a d either $x =$ or $y =$	dM1	
	• $\{y^2 - 4y - 8 = 0 \Rightarrow\}$ $y = \frac{4 \pm \sqrt{(-4)^2 - 4(1)}}{2(1)}$	(-8)				
	Either $x = -1 \pm \sqrt{3}$ or $y = 2 \pm 2\sqrt{3}$		correct y	oth correct x coordinates coordinates. (See note)	A1	
	E.g. $y = 2(-1 + \sqrt{3}) + 4$ or $y = \frac{4}{(-1 + \sqrt{3})}$, etc.		_	ent on the first M mark least one attempt to find the other coordinate	dM1	
	Either $(-1+\sqrt{3}, 2+2\sqrt{3}), (-1-\sqrt{3}, 2-2\sqrt{3})$ or $x = -1+\sqrt{3}, y = 2+2\sqrt{3}$ and $x = -1-\sqrt{3}, y$	$=2-2\sqrt{3}$		All correct and paired	A1	
						(6)
						12

	Question 6 Notes					
6. (d)	Note	Condone $y = 2 \pm \sqrt{12}$ for the 2nd A1 mark.				
	Note	Do not allow $(-1+\sqrt{3}, 2+\sqrt{12}), (-1-\sqrt{3}, 2-\sqrt{12})$ for the final A mark.				
	Note	Writing $x = -1 \pm \sqrt{3}$, $y = 2 \pm 2\sqrt{3}$ without any evidence of the correct coordinate pairings is final A0				
	Note	Writing coordinates the wrong way round				
		E.g. writing $x = -1 + \sqrt{3}$, $y = 2 + 2\sqrt{3}$ and $x = -1 - \sqrt{3}$, $y = 2 - 2\sqrt{3}$				
		followed by $(-1+\sqrt{3}, 2-2\sqrt{3}), (-1-\sqrt{3}, 2+2\sqrt{3})$ is final A0				
	Note	Imply the 1st dM1 mark for writing down the correct roots for their quadratic equation. E.g.				
		• $2x^2 + 4x - 4 = 0$ or $x^2 + 2x - 2 = 0$ or $2x^2 + 4x = 4 \rightarrow x = -1 \pm \sqrt{3}$				
		• $\frac{1}{2}y^2 - 2y - 4 = 0$ or $y^2 - 4y - 8 = 0 \rightarrow y = 2 \pm 2\sqrt{3}$				
	Note	You can imply the 1 st A1, 1 st dM1, 2 nd A1 marks for either				
		• $x(2x+4) = 4$ or $\frac{4}{x} = 2x+4 \rightarrow x = -1 \pm \sqrt{3}$				
	$\bullet \left(\frac{y-4}{2}\right)y = 4 \text{ or } y = 2\left(\frac{4}{y}\right) + 4 \to y = 2 \pm 2\sqrt{3}$					
	with no intermediate working.					
	Note	You can imply the 1 st A1, 1 st dM1, 2 nd A1, 2 nd dM1 marks for either				
		• $x(2x+4) = 4$ or $\frac{4}{x} = 2x+4 \rightarrow x = -1 \pm \sqrt{3}$ and $y = 2 \pm 2\sqrt{3}$				
		• $\left(\frac{y-4}{2}\right)y = 4 \text{ or } y = 2\left(\frac{4}{y}\right) + 4 \rightarrow y = 2 \pm 2\sqrt{3} \text{ and } x = -1 \pm \sqrt{3}$				
	with no intermediate working.					
	Note	You can then imply the final A1 mark if they correctly state the correct coordinate pairings.				
	Note	2nd A1: Allow this mark for both correct x coordinates or both correct y coordinates which are in $a + b \sqrt{a}$				
		the form $\frac{a \pm b\sqrt{c}}{d}$, where a, b, c and d are simplified integers				

Question Number	Scheme	Notes	Mark	XS		
7.	$\mathbf{A} = \begin{pmatrix} 6 & k \\ -3 & -4 \end{pmatrix}, k \neq 8; \ \mathbf{A}^2 +$	$3\mathbf{A}^{-1} = \begin{pmatrix} 5 & 9 \\ -3 & -5 \end{pmatrix};$	$ \begin{array}{ccc} & 5 & 9 \\ & -3 & -5 \end{array}; \mathbf{M} = \begin{pmatrix} & -\frac{1}{2} & -\sqrt{3} \\ & \frac{\sqrt{3}}{2} & -1 \end{pmatrix} $			
(i)(a)	$\det(\mathbf{A}) = 6(-4) - (k)(-3) \ \left\{ = -24 + 3k \right\}$	Correct det(A) which can be un-simplified or simplified				
	$\left\{\mathbf{A}^{-1}=\right\} \frac{1}{2k-24} \begin{pmatrix} -4 & -k \\ 2 & 6 \end{pmatrix}$		$\begin{pmatrix} -4 & -k \\ 3 & 6 \end{pmatrix}$	M1		
	3K - 24(3 6)		Correct A ⁻¹	A1	(2)	
	(36-3k - 6k-4k) (36	-3k $2k$			(3)	
(b)	$\left\{\mathbf{A}^2 = \right\} \left[\begin{array}{cc} 30 - 3k & 0k - 4k \\ -18 + 12 & -3k + 16 \end{array} \right] \left\{ = \left[\begin{array}{cc} 30 - 3k & 0k - 4k \\ -18 + 12 & -3k + 16 \end{array} \right] \right\}$	$ \begin{array}{c c} -3k & 2k \\ 6 & -3k+16 \end{array} $	Correct A ² which can be un-simplified or simplified	B1		
	(36-3k-2k) 2 $(-4$	-k) (5 0)			(1)	
(c)		/ /				
	• attempts to form an equation for (their A^2) + 3(their A^{-1}) = $\begin{pmatrix} 5 & 9 \\ -3 & -5 \end{pmatrix}$ in k • or attempts to add an element of (their A^2) to the corresponding element of 3(their A^{-1}) and equates to the corresponding element of the given matrix to form an equation in k $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $ $ \begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \Rightarrow k = 9 $					
	$\bullet -6 + \frac{9}{3k - 24} = -3$ -3k	$k + 16 + \frac{18}{3k - 24} = \frac{1}{3k - 24}$	-5			
	Either		(
	• attempts to form an equation for (their \mathbf{A}^2) + 3(their \mathbf{A}^{-1}) = $\begin{pmatrix} 5 & 9 \\ -3 & -5 \end{pmatrix}$ in k					
	• or attempts to add an element of (their A^2) to the corresponding element of 3(their A^{-1})					
	dependent on the previous M mark					
	$\begin{cases} e.g6 + \frac{9}{2k-24} = -3 \end{cases} \Rightarrow k = 9$	-	dM1			
	$\mathbf{A} = \begin{pmatrix} 6 & k \\ -3 & -4 \end{pmatrix}, k \neq 8; \mathbf{A}^2 + \frac{1}{3k - 24} \begin{pmatrix} -4 & -k \\ 3 & 6 \end{pmatrix}$ $\left\{ \mathbf{A}^{-1} = \right\} \frac{1}{3k - 24} \begin{pmatrix} -4 & -k \\ 3 & 6 \end{pmatrix}$ $\left\{ \mathbf{A}^{-1} = \right\} \begin{pmatrix} 36 - 3k & 6k - 4k \\ -18 + 12 & -3k + 16 \end{pmatrix} \left\{ = \begin{pmatrix} 36 - 4k \\ -18 + 12 & -3k + 16 \end{pmatrix} \right\}$ $\bullet \begin{pmatrix} 36 - 3k & 2k \\ -6 & -3k + 16 \end{pmatrix} + \frac{3}{3k - 24} \begin{pmatrix} -4 & -k \\ 3 & -24 \end{pmatrix}$ $\bullet 36 - 3k - \frac{12}{3k - 24} = 5 \qquad \bullet 2k + \frac{12}{3k - 24} = -3$ $\bullet -6 + \frac{9}{3k - 24} = -3 \qquad \bullet -3k = -$		A1	(3)		
	Note: Parts (ii)(a) and	l (ii)(b) can be marl	(b) can be marked together page when marking (ii)(a) and (ii)(b)			
(11) (1)	Please refer to the notes on the n					
(ii)(a)			Attempts $p = \pm \frac{1}{2} \pm \left(\sqrt{3}\right) \left(\frac{\sqrt{3}}{2}\right)$	M1		
			or uses a full method of trigonometry to find $p =$			
	$0 p = \frac{-\sqrt{3}}{1 + \frac{1}{2} + \frac{1}{2}} = 2 \text{ or } p = -\frac{1}{2}$	$\frac{-1}{112000} = 2$	p = 2 only	A1		
	- sin "120°" cos	S"120°"			(2)	
(b)	$\frac{1}{2}$	Uses trigonoma	etry to find an expression or value	1	(4)	
		-	is in the range $(1.57, 3.14)$ or	M1		
		(90°, 180°) (-3.1				
	$\bullet \Rightarrow \theta = 180 - \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = 120^{\circ}$	120° or $-240°$ or $\frac{2\pi}{3}$ or $-\frac{4\pi}{3}$				
	• $\Rightarrow \theta = 180 - \tan^{-1}(\sqrt{3}) = 120^{\circ}$	or awrt 2.09 or awrt -4.19				
					(2)	
				1	11	

		Question 7 Notes							
7. (i)(c)	Note	Give 1 st M1 for $ \begin{pmatrix} 36 - 3k - \frac{12}{3k - 24} & 2k - \frac{3k}{3k - 24} \\ -6 + \frac{9}{3k - 24} & -3k + 16 - \frac{18}{3k - 24} \end{pmatrix} = \begin{pmatrix} 5 & 9 \\ -3 & -5 \end{pmatrix} $							
	Note	• $36-3k - \frac{12}{3k-24} = 5 \rightarrow 3k^2 - 55k + 252 = 0 \rightarrow (k-9)(3k-28) = 0 \rightarrow k = 9, \frac{28}{3}$							
		• $2k - \frac{3k}{3k - 24} = 9 \rightarrow k^2 - 13k + 36 = 0 \rightarrow (k - 9)(k - 4) = 0 \rightarrow k = 9, 4$							
		$\bullet -6 + \frac{9}{3k - 24} = -3 \to k = 9$							
		• $-3k + 16 - \frac{18}{3k - 24} = -5 \rightarrow k^2 - 15k + 54 = 0 \rightarrow (k - 9)(k - 6) = 0 \rightarrow k = 9, 6$							
	Note	Uses a correct element equation in part (c) leading to $k = 9$ is M1 dM1 A1 even if they have							
		followed through an incorrect A^{-1} in (i)(a) or an incorrect A^{2} in (ii)(b).							
	Note	Give M0 dM0 A0 for an incorrect method of $36 - 3k - 4 = 5 \Rightarrow k = 9$							
(ii)	Note	$\mathbf{M} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} \cos \theta & -p \sin \theta \\ \sin \theta & p \cos \theta \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1 \end{pmatrix}$							
	Note	IMPORTANT NOTE							
		Give (ii)(a) M0A0 (b) M0A0 for a method of							
		$\mathbf{M} = \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} \cos \theta & -\sin \theta \\ p\sin \theta & p\cos \theta \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1 \end{pmatrix}$							
		leading to (ii)(a) $p =$, (ii)(b) $\theta =$							
(ii)(a)	Note	$\det(\mathbf{M}) = \left(-\frac{1}{2}\right)(-1) - \left(-\sqrt{3}\right)\left(\frac{\sqrt{3}}{2}\right) = 2 \text{ followed by } p = \sqrt{2} \text{ is M0 A0}$							
	Note	$p = \det(\mathbf{M}) = \left(-\frac{1}{2}\right)\left(-1\right) - \left(-\sqrt{3}\right)\left(\frac{\sqrt{3}}{2}\right) = 2 \text{ is M1 A1}$							
	Note	$p = \frac{\sqrt{(\pm\sqrt{3})^2 + (-1)^2}}{\sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}} = 2 \text{ is M1 A1}$							

Question Number	Scheme		Notes		
8.	(i) $u_1 = 3$, $u_{n+1} = u_n + 3n - 2$, $u_n = \frac{3}{2}n^2 - \frac{7}{2}n + 5$ (ii) $f(n) = 3^{2n+3} + 40n - 27$ is divisible by 64			by 64	
(i)	$n=1, \ u_1 = \frac{3}{2} - \frac{7}{2} + 5 = 3$	1	Uses $u_n = \frac{3}{2}n^2 - \frac{7}{2}n + 5$ to show that $u_1 = 3$		
	(Assume the result is true for $n = k$)				
	$\left\{ u_{k+1} = u_k + 3k - 2 \Longrightarrow \right\}$			by attempting to substitute	
	$u_{k+1} = \frac{3}{2}k^2 - \frac{7}{2}k + 5 + 3k - 2 \left\{ = \frac{3}{2}k^2 - \frac{1}{2}k + 3 \right\}$		$u_k = \frac{3}{2}k^2 - \frac{7}{2}k$	$x + 5$ into $u_{k+1} = u_k + 3k - 2$. Condone one slip.	M1
	3,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		depende	ent on the previous M mark.	13.61
	$= \frac{3}{2}(k+1)^2 - 3k - \frac{3}{2} - \frac{1}{2}k + 3$		Attempts to	write u_{k+1} in terms of $(k+1)$	dM1
	$= \frac{3}{2}(k+1)^2 - \frac{7}{2}k + \frac{3}{2}$ $= \frac{3}{2}(k+1)^2 - \frac{7}{2}(k+1) + 5$				
	$= \frac{3}{2}(k+1)^2 - \frac{7}{2}(k+1) + 5$	Uses	<i>algebra</i> to ach	nieve this result with no errors	A1
	If the result is <u>true</u> for $n = k$, then it is <u>true</u> f	for $n =$	k+1. As the	result has been shown to be	A 1
	true for $n = 1$, then the r	esult <u>i</u>	s true for all n	$(\in \mathbb{Z}^{\scriptscriptstyle +})$	A1 cso
					(5)
(ii)	$f(1) = 3^5 + 40 - 27 = 256$			f(1) = 256 is the minimum	B1
Way 1	$f(k+1) - f(k) = (3^{2(k+1)+3} + 40(k+1) - 27) - (3^{2(k+1)+3$	$3^{2k+3} +$	40k - 27)	Attempts $f(k+1)$ $f(k)$	M1
	$f(k+1) - f(k) = 8(3^{2k+3}) + 40$				
	$= 8(3^{2k+3} + 40k - 27) - 64(5k - 4)$			$8(3^{2k+3} + 40k - 27)$ or $8f(k)$	A1
	or = $8(3^{2k+3} + 40k - 27) - 320k + 256$		-	-64(5k-4) or $-320k+256$	A1
	f(k+1) = 8f(k) - 64(5k-4) + f(k)			n at least one of the previous	
	or $f(k+1) = 8f(k) - 320k + 256 + f(k)$	$ $ $_{\rm N}$		racy marks being awarded. the subject and expresses it in	dM1
	or $f(k+1) = 9(3^{2k+3} + 40k - 27) - 320k + 256$	17.		of $f(k)$ or $(3^{2k+3} + 40k - 27)$	
	If the result is true for $n = k$, then it is true for	or <i>n</i> –			
					A1 cso
	true for $n=1$, then the re	Suit IS	s true for all n	(∈∠)	(6)
(ii)	$f(1) = 3^5 + 40 - 27 = 256$			f(1) = 256 is the minimum	(6) B1
Way 2	$f(k+1) = 3^{2(k+1)+3} + 40(k+1) - 27$		f(1) = 230 is the minimum Attempts $f(k+1)$		M1
	$f(k+1) = 9(3^{2k+3}) + 40k+13$		Attempts 1(k+1)		1411
	$= 9(3^{2k+3} + 40k - 27) - 64(5k-4)$			$9(3^{2k+3} + 40k - 27)$ or $9f(k)$	A1
	$= 9(3^{2k+3} + 40k - 27) - 64(3k - 4)$ or $= 9(3^{2k+3} + 40k - 27) - 320k + 256$		-	A1	
				-64(5k-4) or $-320k+256at least one of the previous$	***
	f(k+1) = 9f(k) - 64(5k-4) or $f(k+1) = 9f(k) - 320k + 256$		accu	racy marks being awarded.	4M1
	or $f(k+1) = 9(3^{2k+3} + 40k - 27) - 320k + 256$	M		the subject and expresses it in	dM1
	terms of $T(k)$ of $(3 + 40k - 21)$				
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k + 1$</u> , As the result has been shown to be				A1 cso
	true for $n = 1$, then the re-	esult <u>i</u> s	s true for all <i>n</i>	$(\in \mathbb{Z}^+)$	111 050
					11

Question Number		Scheme	Notes		Marks		
8.		(ii) $f(n) = 3^{2n+3} + 40n - 27$ is divisible by 64					
(ii)		General Method: Using $f(k+1)$ $mf(k)$; where m is an integer					
Way 3	$f(1) = 3^5 + 40 - 27 = 256$				f(1) = 256 is the minimum	B1	
	f(k+1)	$mf(k) = (3^{2(k+1)+3} + 40(k+1) - 27) - m$	$n(3^{2k+3})$	+40k-27)	Attempts $f(k+1)$ $mf(k)$	M1	
	$f(k+1) - mf(k) = (9-m)(3^{2k+3}) + 40k(1-m) + (13+27m)$						
	$= (9-m)(3^{2k+3}+40k-27)-64(5k-4) (9-m)(3^{2k+3}+40k-27) or (9-m)$			$^{3} + 40k - 27$) or $(9 - m)f(k)$	A1		
					64(5k-4) or $-320k+256$	A1	
	$f(k+1) = (9-m)f(k) - 64(5k-4) + mf(k)$ or $f(k+1) = (9-m)f(k) - 320k + 256 + mf(k)$ $\text{dependent on at least one of the previous}$ $\text{accuracy marks being awarded.}$ $\text{Makes } f(k+1) \text{ the subject and expresses it}$ $\text{in terms of } f(k) \text{ or } (3^{2k+3} + 40k - 27)$					dM1	
	If the r	result is $\underline{\text{true for } n = k}$, then it is $\underline{\text{true for }}$	n = k	+1, As the res	sult has been shown to be	A1 cso	
		true for $n = 1$, then the result	lt is <u>is</u>	true for all n ($\in \mathbb{Z}^+$)	AI CSU	
(ii)		General Method: Us	sing f	f(k+1) $mf(k)$)		
Way 4		$f(1) = 3^5 + 40 - 27 = 256$			f(1) = 256 is the minimum	B1	
	f(k+1)	$mf(k) = (3^{2(k+1)+3} + 40(k+1) - 27) - m$	$n(3^{2k+3})$	+40k-27)	Attempts $f(k+1)$ $mf(k)$	M1	
	f(k+1)	$mf(k) = (9-m)(3^{2k+3}) + 40k(1-m) +$	(13+	27 <i>m</i>)			
	55	$\rightarrow f(L+1) + 55f(L) = 64(2^{2k+3}) = 22$	401-	1470	$m = -55$ and $64(3^{2k+3})$	A1	
	$m = -55 \Rightarrow f(k+1) + 55f(k) = 64(3^{2k+3}) - 2240k + 1472$ $m = -55 \text{ and } -2240k + 1472$			A1			
	$f(k+1) = 64(3^{2k+3}) - 2240k + 1472 - 55f(k)$ dependent on at least one of previous accuracy marks be awarded. Makes $f(k+1)$ the substitution of $f(k+1) = 64(3^{2k+3}) - 64(35k-23) - 55f(k)$					dM1	
	TC .1		-	ll .	expresses it in terms of $f(k)$		
	If the r	result is $\underline{\text{true for } n = k}$, then it is $\underline{\text{true for }}$				A1 cso	
		true for $n = 1$, then the resu	ult <u>is</u> 1	true for all <i>n</i> (∈	(\mathbb{Z}^+)		
		1		8 Notes			
(i) & (ii)	Note	Note Final A1 for parts (i) and (ii) is dependent on all previous marks being scored in that part. It is gained by candidates conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution.					
(i)	Note	Moving from either $u_{k+1} = \frac{3}{2}k^2 - \frac{7}{2}k + 5 + 3k - 2$ or $u_{k+1} = \frac{3}{2}k^2 - \frac{1}{2}k + 3$					
		to $u_{k+1} = \frac{3}{2}(k+1)^2 - \frac{7}{2}(k+1) + 5$ with no intermediate stage involving either					
		• writing u_{k+1} as a function of $(k+1)$					
	• or writing u_{k+1} as $u_{k+1} = \frac{3}{2}k^2 + 3k + \frac{3}{2} - \frac{7}{2}k - \frac{7}{2} + 5$						
	is dM1A0A0 Note Some candidates will write down $u_{k+1} = \frac{3}{2}k^2 - \frac{7}{2}k + 5 + 3k - 2 \text{ (give 1st M1)} \text{ and simplify this to } u_{k+1} = \frac{3}{2}k^2 - \frac{1}{2}k + 3$						
	They will then write $u_{k+1} = \frac{3}{2}(k+1)^2 - \frac{7}{2}(k+1) + 5$ (give 2 nd M1) and use algebra to show that					how that	
	$u_{k+1} = \frac{3}{2}(k+1)^2 - \frac{7}{2}(k+1) + 5 = \frac{3}{2}(k^2 + 2k + 1) - \frac{7}{2}k - \frac{7}{2} + 5 = \frac{3}{2}k^2 - \frac{1}{2}k + 3 \text{ (give 1st A1)}$					e 1 st A1)	

		Question 8 Notes Continued				
8. (ii)	Note Some candidates may set $f(k) = 64M$ and so may prove the following general result					
		• $\{f(k+1) = 9f(k) - 64(5k-4)\} \Rightarrow f(k+1) =$	= 5761	M - 64(5k - 4)		
		• $\{f(k+1) = 9f(k) - 320k + 256\} \Rightarrow f(k+1)$	= 576	M - 320k + 256		
	Note	$f(n) = 3^{2n+3} + 40n - 27$ can be rewritten as either f	f(n) =	$=27(3^{2n})+40n-27$		
		or $f(n) = 27(9^n) + 40n - 27$				
	Note	In part (ii), Way 4 there are many alternatives where	cand	idates focus on isolating		
		$\beta(3^{2k+3})$ where β is a multiple of 64. Listed below	w are	some alternative results:		
		• $f(k+1) = 128(3^{2k+3}) - 119f(k) + 4800k - 3$	3200			
		$\bullet f(k+1) = -64(3^{2k+3}) + 73f(k) - 2880k + 1$	1984			
		See below for how these are derived.				
8. (ii)		(ii) $f(n) = 3^{2n+3} + 40n - 27$ is	divisi	ble by 64		
		The A1A1dM1 marks for Alternatives	using	f(k+1) mf(k)		
Way 4.1	f(k+1) =	$=9(3^{2k+3})+40k+13$				
	=	$= 128(3^{2k+3}) - 119(3^{2k+3}) + 40k + 13$				
	_	$= 128(3^{2k+3}) - 119[3^{2k+3} + 40k - 27] + 4800k - 3200$		$m = -119$ and $128(3^{2k+3})$	A1	
	_	- 120(3) - 119[3 + 40k - 27] + 4000k - 3200	m=	= -119 and $4800k - 3200$	A1	
	$f(k+1) = 128(3^{2k+3}) - 119f(k) + 4800k - 3200$			as before	dM1	
	or $f(k+1) = 128(3^{2k+3}) - 119[3^{2k+3} + 40k - 27] + 4800k - 3200$					
Way 4.2	f(k+1) =	$=9(3^{2k+3})+40k+13$				
	=	$= -64(3^{2k+3}) + 73(3^{2k+3}) + 40k + 13$				
		$= -64(3^{2k+3}) + 73[3^{2k+3} + 40k - 27] - 2880k + 1984$		$m = 73$ and $-64(3^{2k+3})$	A1	
	_			=73 and -2880k + 1984	A1	
	f(k+	$f(k+1) = -64(3^{2k+3}) + 73f(k) - 2880k + 1984$ or $f(k+1) = -64(3^{2k+3}) + 73[3^{2k+3} + 40k - 27] - 2880k + 1986$		as before	dM1	
	or $f(k+1)$			34		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom